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• Motivation for impedance rather than wake potential

(or its integral) to compute the collective force of

CSR.

• Complete impedance Z(n, ω) versus its “diagonal

part” Z(n) = Z(n, nω0). Required, in principle, when

the bunch profile evolves in time.

• General form of CSR force and radiated power.

Causality and retardation.

• Practical computation of force and power in a Vlasov

or macroparticle simulation.
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• Practical computation of force and power (cont’d):

Reduction of
∑

n(· · ·)
∫

dω(· · ·) can be done in terms of

Z(n, nω0) and ∂Z/∂ω(n, nω0), to a good approximation,

except for ω near waveguide cutoffs

ωp = ±
πpc

h
, p = 1, 3, · · · ,

where Z(n, ω) has a pole in ω. Pole is associated with

prominent retardation effects.
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Shielding Model

For dynamical studies it is essential to including shielding

of CSR due to the vacuum chamber. For this talk,

assume parallel-plate model, plate separation h, source on

circular orbit of fixed radius R in mid-plane. Cylindrical

coordinates (r, θ, y), with y perpendicular to plates.

Our story can be adapted to other models with analytic

solutions, but maybe not to models solved numerically

(Stupakov & Kotelnikov).
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Impedance vs. Wake Potential

Conventionally, the wake voltage can be represented by

either the impedance Z(n), or the wake potential W (z),

or the integral S(z) of W :

V (z) = Qω0

∑

n

einz/RZ(n)λn =

Q
∫

W (z − z′)λ(z′)dz′ = −Q
∫

S(z − z′)λ′(z′)dz′

For our radiation impedance, even S(z) is too

concentrated at small z to be useful in a Vlasov

simulation. We can use Z(n) successfully, with the sum

on n converging quickly by virtue of the fall-off of λn.
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Laplace Transform of Current

Longitudinal current has the form

I(θ, t) = Qω0λ(θ − ω0t, t) , λ(θ, t) = 0 , t ≤ 0 ,

which has a Fourier transform with Imω > 0 (equivalent

to Laplace transform)

Î(n, ω) =
1

(2π)2

∫ 2π

0
e−inθdθ

∫

∞

−∞

eiωtI(θ, t)

=
Qω0

2π

∫

∞

0
ei(ω−nω0)tλn(t)dt , Imω = v > 0.

Assume that λn ∈ Cp , p ≥ 2 with

λ(k)
n (0) = 0 , k = 0, 1, · · · , p − 1.
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Wake Voltage in Terms of Complete Impedance

Taking similar Laplace transform of Maxwell’s equations

and solving for the longitudinal electric field Ê(n, ω), we

define Z(n, ω) by

−2πRÊ(n, ω) = Z(n, ω)Î(n, ω) = V̂ (n, ω) .

Hence the general form of the wake voltage is

V (θ, t) =

Qω0

∑

n

einθ
∫

Imω=v
dωe−iωtZ(n, ω)

·
1

2π

∫

∞

0
ei(ω−nω0)t′λn(t′)dt′ .
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Radiated Power in Terms of Complete Impedance

P (t) =

(Qω0)
2

∑

n

einθλn(t)
∫

Imω=v
dωe−iωtZ(n, ω)

·
1

2π

∫

∞

0
ei(ω−nω0)t′λn(t′)dt′ .

Depends on both ReZ and ImZ.
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Causality and Analyticity

Contribution of λn(t) for t > 0 should vanish by

causality. Mathematically, this happens because Z(n, ω)

is analytic in ω in the upper half-plane, and obeys

|Z(n, ω)| ≤ M , Imω ≥ 0. Integrating once by parts we

can get the bound
∣

∣

∣

∣

∫

∞

t+δt
ei(ω−nω0)t′λn(t′)dt′

∣

∣

∣

∣

≤
M

|ω − nω0|
e−Imω(t+δt) .

This shows that when the ω-contour is moved to a

semi-circle at infinity in the upper half-plane, the

contribution of
∫

∞

t+δt vanishes for any δt > 0.
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The Limit δt → 0

For any δt > 0 we have

V (θ, t) =

Qω0

2π

∑

n

einθ
∫

Imω=v
dωZ(n, ω)

∫ t+δt

0
dt′ei(ω−nω0)t′λn(t′) .

Can we put δt = 0 in this equation? Strangely enough,

the answer is NO! The ω-integral does not converge

uniformly w.r.t. δt, so taking the limit δt → 0 under the

integral is not justified, and in fact gives the wrong

answer.
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Strategy for the Limit δt → 0

Integrate twice by parts on t′ to get inverse powers of

ω − nω0. Then the ω-integral converges uniformly and we

can take the limit under the integral. Then integrate by

parts in opposite direction. The ω-integral becomes

−
∫

dωe−iωt Z(n, ω)

2π(ω − nω0)2

∫ t

0
dt′ei(ω−nω0)t′λ′′

n(t′)

= i
∫

dωe−iωt Z(n, ω)

2π(ω − nω0)

∫ t

0
dt′ei(ω−nω0)t′λ′

n(t′) .
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One More Integration by Parts Raises Hell!

∫

dωe−iωt Z(n, ω)

2π

∫ t

0
dt′ei(ω−nω0)t′λn(t′)

−
1

2πi
λn(t)

∫

dω
Z(n, ω)

ω − nω0

.

The first term is what we would get by putting δt = 0 in

the original integral. The second term does not exist

unless defined as a symmetric limit (which is allowed):

lim
Ω→∞

∫ Ω+iv

−Ω+iv

dωZ(n, ω)

ω − nω0

.
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We can base calculations on the forms with λ′

n or λ′′

n.

V (θ, t) = −Qω0

∑

n

einθ
∫

dωe−iωt Z(n, ω)

2π(ω − nω0)2

·
∫ t

0
dt′ei(ω−nω0)t′λ′′

n(t′)

• The 2nd order pole concentrates the ω-integral near

nω0.

• If λ′′

n(t) can be regarded as constant over any time

interval ∆t (i.e., λn is locally quadratic) then the

t′-integral is proportional to sinc((ω − nω0)∆t/2),

also concentrated near nω0.
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So let’s expand Z(n, ω) about nω0!

Taking two terms and applying residue theorem, we find

V (z, t) =

Qω0

∑

n

einz/R
(

Z(n, nω0)λn(t) + i
∂Z

∂ω
(n, nω0)λ

′

n(t)
)

.

This does not work near waveguide cutoffs ω = ±πp/h,

where Z(n, ω) has poles. Curiously, the residues of these

poles vanish at nω0 = ±πp/h, so they do not show up in

a plot of Z(n, nω0). They do show up in the derivative.
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Evaluate the Pole Term and Expand

the Remainder in a Taylor series

Let Z̃ be the non-pole remainder. Then the result is

V (z, t) =

Qω0

∑

n

einz/R
[

Z̃(n, nω0)λn(t) + i
∂Z̃

∂ω
(n, nω0)λ

′

n(t) + · · ·

+
Z0πR

2βh

∑

p

Λp

∫ 0

−t
λn(t + u)du

(

(nω0 − αpc)e
−i(nω0−αpc)

+(p → −p)
)]

, αp = πp/h .

Retardation associated with waveguide cutoffs.
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Conclusion

• To treat an evolving bunch in the impedance

formalism, we have plausible corrections to the naive

replacement λn → λn(t), which are not expensive to

compute. We avoid an expensive computation of the

double sum
∑

n(· · ·)
∫

dω(· · ·).

• We have discovered an interesting retardation effect

associated with waveguide cutoffs. One should try to

understand this in physical terms.

• Numerical results coming soon!




